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Cartesian Grid Representation of Irregular Boundaries

Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume
representation (Noh, 1964).
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Advantages of underlying rectangular grid:

e Grid generation is tractable (Aftosmis, Berger, and Melton, 1998).

e Good discretization technology, e.g. well-understood consistency theory for
finite differences, geometric multigrid for solvers.

e Straightforward coupling to structured AMR (Chern and Colella, 1987; Young
et. al., 1990; Berger and Leveque, 1991).



Lagrangian vs. Eulerian Representations of Free Surfaces

Lagrangian:
Eulerian:
| |
Polygonal Volume of fluid Level Set

(LANL, 1950s) (LANL, LLNL, 1960) (Osher & Sethian, 1988)



Finite-Volume Discretization - Fixed Boundaries
Consider PDEs written in conservation form:

V- (Vo) =p 8—(Z+v-ﬁ(U):o
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e Primary dependent variables approximate values at centers of Cartesian cells.
Extension of smooth functions to covered region exists, and extension operator
is a bounded operator on the relevant function spaces.

e Divergence theorem over each control volume leads to “finite volume”
approximation for V - F":
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e Away from the boundaries, method reduces to standard conservative finite
difference discretization.



o If . - i, approximates the value at the centroid to O(h?), then the truncation
error7 =D - F — V- F is given by

7 = O(h?) at interior cells (if approximation is smooth).

= O(—) at irregular control volumes.
K



Poisson’s Equation
A¢=p=L'¢" = pt
L'"=DF, F=~Vé

F computed using linear interpolation of centered

difference approximations to derivatives of ¢.
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as = O(—) uniformly w.r.t. K
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The small denominator can be eliminated by diagonal scaling, eliminating the
obvious potential conditioning problem: we solve

R (") = ripl



Modified Equation Analysis

Error equation: ¢p¢acth = ¢h + (Lh)=1(7)
Modified equation: ¢ = (L") 7!(7) ~ A717F
where 7 is some extension of 7, e.g.

1=0(h)

piecewise constant on each control volume.

T1=0(h) on set of width O(h)

Smoothing of truncation error leads to a solution error that is O(h?) in max
norm.



Extension to Three Dimensions
Our matrices aren’t symmetric, nor are they M-matrices.
There are two obvious ways to extend the O(h?) flux calculation in 2D to 3D:

For intermittent configurations of adjacent small control volumes, linear
interpolation is unstable (point Jacobi diverges), while bilinear interpolation
appears to always be stable. Also, the inconsistent method coming from
piecewise-constant interpolation is stable.

Unstable cases correspond to problems where small subproblems have
eigenvalues of the wrong sign: the spectrum of PL" P! has elements in the right
half-plane, where P is the projection onto a small set (2-8) of contiguous
irregular control volumes.



Solution Error for Poisson’s Equation in 3D
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Discretization of Hyperbolic Problems
yrtlh — gt AtD - s

Truncation error on irregular cells:

Un+1,e:1:act o Un,ea:act

At +D - F(U“*") = O(h) + O(A?) +0(%)

\]
|l

Want to use a time step given by the CFL for cells without the boundary.

Urtl =y — AtD - F
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Flux Difference Redistribution

In irregular cells, we hybridize the conservative update (D - F') with a
nonconservative, but stable scheme (V - F)NC, and redistribute the
nonconservative increment to nearby cells.

Ut = U™ — At(D - F)NY —wAt((D - F) — (D - F)N¢)

The weight w is chosen so that,as K — 1, w — 1, and w = O(k).



The amount of mass lost from each cell is
SM = —(1 —w)x((V - F)¢ — (V- F)N®) = 0(h)

We redistribute that mass to nearby cells in a volume-weighted way.
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The truncation error for this method is 7 = O(h) in cells sufficiently close to
irregular cells, 7 = O(h?) otherwise.



Modified Equation Analysis
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If the boundary is noncharacteristic, the large forcing

+V-FU™?) =7

on the boundary can only act for a short time:

Cﬁi—(t] = 7, but the characteristic path is in the

region where 7 = O(h) for only a time O(h/\),
where ) is the characteristic speed. In that case,

U" = U+ O(h?)
uniformly in z. If the boundary is characteristic, then we observe
U" =U + O(h) in L*™ norm
U" = U + O(h*) in L' norm



Diffusion in a Time-Dependent Domain
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In order to use a second-order accurate implicit time discretization, it is
necessary to convert the moving boundary problem into a sequence of fixed
boundary problems.

e Move the boundary, updating cells that are uncovered by appropriate
extrapolation.

e Solve the heat equation on a fixed domain for one time step, using
extrapolated boundary conditions.



If we use Crank-Nicolson for the second step, the resulting method is unstable.
To obtain a stable, second-order accurate method, must use an implicit
Runge-Kutta method with better stability properties.

(I =11 A)(I = 12 A)™ = (I + al)" + At(I + ryA) foF2

At At
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Moving Boundary Calculation in Three Dimensions




To treat more complex problems, we

e Decompose them into pieces, each one of which is well-understood, and
between which the coupling is not too strong;

e Use numerical methods based on our understanding of the components,
coupled together using predictor-corrector methods in time.

Example: Incompressible Navier-Stokes equations

o
o G-Vt Vp=rvAd

ot
V-u=0

These equations can be splitting into three pieces:

—

Hyperbolic: 8_11: +u-Vu=0
Parabolic: % = vAU
ot

Elliptic: Ap =V . (—u-Vi+ vAu)



Problems Arising in Decomposition into Classical Components
Using asymptotics to eliminate fast scales, or split slow and fast scales.

e Low Mach number asymptotics to eliminate acoustic scales: incompressible
flow, low-Mach-number combustion, anelastic models for geophysical flows
(Rehm and Baum, 1978; Majda and Sethian, 1985; Lai, Bell, Colella, 1993).

o Allspeed methods - splitting dynamics into vortical and compressive
components (Colella and Pao, 1999).

e Methods for splitting the fast dielectric relaxation dynamics in charged-fluid

models of “almost” quasineutral plasmas (Vitello and Graves, 1997; Colella,
Dorr, and Wake, 1999).

All of these approaches lead to the introduction of redundant equations or
constraints: p = const., gnet = .... The presence of such constraints complicate
the formulation of time-discretization methods.

Hyperbolic PDEs containing gauge constraints, such as ideal MHD (V - B = 0)
or solid mechanics, are well-posed only if the constraint is satisfied. Truncation
error may cause the constraint to be violated (Miller and Colella, 2001; Crockett,
et. al., to appear).



Cartesian Grid Discretization of Free Boundary Problems
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e Solution is double-valued on all cells intersecting the free boundary.

e Finite-volume discretization of conservation laws on each control volume on
either side of the front.
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e Motion of the front and discretization in the
interior are coupled via the jump relations:
MU = U™ + { sum of fluxes }




Hyperbolic Free Boundary Problems
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[F -t — sU] = g on QY2 (¢)
= =1

e Discrete geometric quantities are a function of time, e.g., x = x(?).

¢ Divergence theorem is applied in space-time to obtain discrete evolution
equation:

oU -
0= [ — - Fdxdt =
5 +V T

_ At . .
rRrHigntt — ghU™ + —( Y a.F, iy +ap(F-iig - sU))



Chenges to Fixed-Boundary Algorithm
e Riemann problem used to compute fluxes, speed of the front.

e Small-cell stability: mass increments are redistributed along characteristics
in the direction normal to front.

oM =86MT +6M~
5M+ = Z (lk . (SM)Tk

A >0

dM™ remains on the same side of the front as it was generated on, while
oM ~ is redistributed across the front.

e Accuracy: for genuinely nonlinear waves, free boundary is
noncharacteristic, so solution error is one order smaller that truncation error

1IN max norm.



Elliptic Free Boundary Problems

BAT = p?on O, qg=1,2

692 = g, [6] = g on 00117

Given the values at the cell centers, the algorithm for the fixed boundary can be
used to evaluate the operator, provided that one can find the values for ¢%. The
jump relations lead to a pair of linear equations for ¢%:

¢p — ¥ = 9p(Tp)
ﬁld;y_ﬁ?d;{ﬂ_ (ZB) ®\®/O

dr dr — INLEB x X >< = o

Where ®9(r) are the interpolating poly-

nomials along the normal directions

from 7p. X |ox | x| s




Free Boundary Problems for Diffusion

aaTt — DYAT® + [ on Q%(t), o = 1,2
[Dg_i] = gn , [T] = gp on 9Q'/2(t)

s is prescribed (not the Stefan problem).
As before, we convert a moving boundary problem into a sequence of problems
on fixed boundaries.

oT - oT
6_n] =gnN +0- [Dvé?—n]

. 1- .
T] = gp +0-[VT]+ 56 [VVT] -

D

-




Future Work and Open Questions

e Adaptive mesh refinement.
e Software infrastructure.

e Decomposition into classical components: phase change boundaries, surface
tension.

e Consistent discretization methods for free-boundary case.

e Other applications: magnetic fusion, combustion, cell modeling, bio-MEMS.



